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Searching and Learning in a Random Environment
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Area concentrated search provides a means by which foragers may exploit heterogeneities in a resource
following a simple rule of thumb which reacts to encounters with that resource by changing search
speeds. A model with few parameters is presented. It permits an analysis of optimal searching rules in
a random environment. We show that optimal search involves a set of conditional rules that reflect the
‘‘patchiness’’ of resource distribution. The optimal area concentrated search strategy is not only a matter
of slowing down when encountering a resource, but may involve speeding up when encounering the
resource in more uniform environments. The manner in which foragers accumulate information about
a resource during searching is analysed as a trade-off between ‘‘identification’’ and ‘‘control’’, or
exploration and exploitation. The value of a period of identification, i.e. a period of learning, is analysed
in a fluctuating environment in which the state of the environment is sampled from a given distribution
following each new foraging bout. The value of learning during searching relates to stochasticity within
a bout and variation between bouts. The value of information about the environment within a given
foraging bout, and hence the likely value of learning, is analysed by comparing optimal strategies with
optimal generalist strategies. Information becomes increasingly valuable as resource distributions
becomes more patchy. Foragers adopting conditional searching rules may manifest type three functional
responses (sigmoidal functional response) through an apostatic (positive density dependent) effect. The
significance of this response, and learning behaviour on population stability, is briefly discussed.
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Introduction

The development of optimal foraging theory was
prompted by observations showing that resources are
often not uniformly distributed in the environment
(MacArthur & Pianka, 1966). The theory stressed, on
the one hand, the particulate nature of the prey and,
on the other, the more or less diffuse assemblages of
prey that could constitute, or occur on, patches. The
tradition in optimal foraging theory (OFT) has
consequently been bicameral, with models of prey
handling (Schoener, 1971; Charnov & Orians, 1973)
being developed independently of models of patch use
(Charnov, 1976). Several authors have pointed out
that the prey and patch are rarely distinct (Bond,
1980), and that the presence of prey is often the
exclusive indicator of the start of a patch (Kruuk &
Sands, 1972; Ayal, 1987). The common indivisibility
of prey and patch has prompted the analysis of

so-called area concentrated search (ACS) behaviour
in which a predator is able to respond to variations
in prey distributions by varying its searching efforts:
following an encounter with resource, a forager
searches intensively in a more circumscribed region,
while a failure to encounter a resource leads to a more
extensive, less circumspect mode of search (Schoener,
1971; Smith, 1973; Pyke, 1978; Carter & Dixon,
1982). ACS in a continuous patchy environment
thereby ensures that foraging behaviour will, to some
extent, match the distribution of resource, and may be
viewed as a simple form of habitat selection (Wiens,
1976).

ACS behaviour has not, however, become a cen-
tral component of foraging theory, a fact given
away by its scant treatment in Stephens & Krebs’s
definitive text in this area (Stephens & Krebs, 1986).
There are a number of factors that might have
contributed to this neglect. Spatial behaviour is
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difficult to quantify, hence area concentrated search
models are predominantly qualitative (Stillman &
Sutherland, 1990; Benhamou, 1992) and consequently
hard to test. Learning and memory often guide an
animal’s subsequent foraging behaviour (Hoffman,
1983; Fourcassie & Tranielle, 1993; Noda et al.,
1994), while most ACS models assume that the
state of the environment is already known (but see
Benhamou, 1994). Foragers are often able to per-
ceive the presence of distant prey items by means
of visual scanning and therefore need not rely
exclusively on current encounters to dictate foraging
efforts (Evans & O’Brien, 1986; Getty & Pulliam,
1993). ACS models are often simulations involving
many parameters and consequently provide few
simple insights and predictions into foraging or
searching behaviour.

In this paper we present a model that involves a
small number of parameters and which is investi-
gated using a combination of analytical and
computational techniques. We use the model to
elucidate the decision rules employed by foragers
attempting to maximize their expected energetic
intake rate in a simple random environment. We
examine:

(1) How a continuous range of resource dis-
tributions maps onto a discrete set of
foraging strategies, or foraging ‘‘rules of
thumb’’, and whether stochasticity in the
resource will be matched by stochasticity in
the foraging rule.

(2) How tracking errors experienced during
searching can provide insights into for-
aging strategies by highlighting the costs of
particular searching rules in different re-
source distributions.

(3) The resource-dependent choice of a search-
ing rule in ‘‘patchy’’ vs. ‘‘uniform’’ environ-
ments, i.e. the degree of sensitivity of
searching rules to resource variability.

(4) The impact of fluctuating environments on
searching behaviour. How a learning rule
that accumulates information about the
resource during searching can improve
future searching efforts, and how learn-
ing can compromise current foraging
efficiency: this is explored as a trade-off
between identification and control.

(5) The value of information when foraging
using an ACS mechanism, i.e. the increase
in gains caused by adopting the optimal
strategy over a fixed generalist strategy.

The value of information is examined in
environments differing in heterogeneity.

(6) How the functional response of an area
concentrated searcher reflects underlying
searching rules. The question of whether
learning could cause populations to become
more stable is also examined.

An Area Concentrated Search Model

In this model the distribution of prey is represented
as items of resource distributed at discrete points
along the length of a straight line (for a similar
treatment see Knoppien & Reddingius, 1985). Area
concentrated searching thus becomes a function of
switching between fast and slow search speeds with
low and high encounter probabilities. ACS assumes
that regions dense with resource should be explored
slowly, to maximize the chances of encounter, and less
dense regions explored rapidly, to minimize the time
spent searching in unprofitable areas (Gendron &
Staddon, 1983; see Fig. 1).

   

The environment is modelled as a chain in which
links are specified by an index n. The state of the nth
link is described by the variable en , which can take two
possible values. The presence of a single prey in the
link is denoted by en=1, and the absence of prey by
en=0. There is never more than one prey in the same
link. The distribution of the prey is determined by a
Markov chain with the state transition matrix P, in
which each row element pij is the conditional
probability that en+1=1−j given that en=1−i
(i, j=0, 1). When the value of elements in the leading
diagonal of P is high, ‘‘patches’’ of resource
abundance will be interrupted by stretches of resource
scarcity. By modifying the elements of P we are able
to construct regions dense with prey ‘‘patches’’ that

F. 1. The forager searches the environment for prey items that
occur in links. The prey are distributed according to a Markov
process. The forager is able to explore at two speeds: u which is
slow and has a high encounter probability, and v which is fast,
covers a larger area and has a low encounter probability. Searching
strategies are rules for switching between search speeds conditional
upon success and failure at encountering prey. An optimal
searching policy is a set of optimal search strategies for a range of
resource distributions (states of the environment).



       419

alternate with regions poor in resource, of different
average lengths.

    

The forager can be in one of two searching states
(or speeds), u or v, corresponding to intensive and
extensive search (slow and fast speed), respectively.
The encounter probabilities associated with these
states are pu=prob(encounter at u=en=1) and
pv=prob(encounter at v=en=1). These are state-
dependent encounter probabilities and follow Gen-
dron & Staddon’s model (1983) in which a reduction
in searching speed increases the probability of
encounter and reduces the time available to search.
The encounter probabilities at each speed are given
by

pu=1−
u

MaxSpeed
, (1)

pv=1−
v

MaxSpeed
, (2)

and the times taken to search each link in each state
are given by tu and tv respectively. Throughout we
assume that puqpv , tuqtv , and pu /tu=pv /tv which
equates the expected intake rate at each search speed
on a perfectly homogeneous resource (i.e., all links
of the chain are good).

The behaviour of the forager is modelled as a
continuous time, discrete state Markov chain with
two state transition matrices S and F. These matrices
govern the transitions between the two states (u and
v) following either a successful encounter or a failure
to encounter prey. We can write down the elements
of these matrices as

sij={probability of switching to state j=

successful encounter in state i} (3)

fij={probability of switching to state j=

failure to encounter in state i} (4)

For convenience we abbreviate the elements of the
three transition matrices, with one matrix for the
environment and two for the forager,

P=$p1 1−p2

1−p1 p2%, S=$s1 1−s2

1−s1 s2%,
F=$f1 1−f2

1−f1 f2%,

and we denote a forager’s optimal searching strategy
as p(s1, s2, f1, f2).

  

We assume that the forager inhabits an environ-
ment in which the resource distribution P is invari-
ant through time (homogeneous Markov chain). We
seek to find the elements of the S and F matrices that
will maximize the expected long term intake rate of
the forager g, searching in this environment with a
conditional rule,

g=lim
t4a

total number of successful encounters
(proportion of time in u)tu

+(proportion of time in v)tv

. (5)

We leave the derivation of this equation to Appendix
A. Note that eqn (5) describes a rate in which the total
number of prey successfully encountered (in units of
energy) is divided by the total time spent searching in
each of the two searching speeds.

The Optimal Searching Policy

   

Figure 2 illustrates the optimal searching rules
corresponding to a range of values for the distribution
matrix P. The parameters p1 and p2 vary continuously
between 0 and 1. There is a switching boundary along
the line p1=1−p2. This boundary defines a threshold
above and below which an optimal forager switches
between two different search strategies.

F. 2. Optimal foraging strategies in a random environment.
The parameters p1 and p2 determine the patchiness of the resource
distribution. There is a switching threshold at p1=1−p2. The
search strategies are deterministic. Below the threshold, extensive
search is favoured when successful and intensive search when
unsuccessful: ‘‘win–fast, fail–slow’’. Above the threshold, intensive
search is favoured when successful and extensive search when
unsuccessful: ‘‘win–slow, fail–fast’’. The optimal foraging policy is
the set of two optimal strategies.
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Below the boundary the environment is prone to
switch between good and bad after each link of the
chain (‘‘uniform’’), when above the boundary one link
is a good predictor of the occupancy of the following
link of the chain (‘‘patchy’’).

    

A deterministic strategy implies that a switch
between states occurs with a probability of one or
zero. The stochastic nature of the resource distri-
bution is not reflected in a stochastic decision rule.
When p1q1−p2 the optimal strategy is given by
p(1,0,0,1), which implies that following a success the
forager will search in intensive mode, and following
a failure will search in extensive mode (‘‘win–fast:fail–
slow’’). When p1Q1−p2, the optimal strategy is given
by p(0,1,1,0) hence following a success the forager
searches in extensive mode and following a failure
searches in intensive mode (‘‘win–slow:fail–fast’’).
When adopting the optimal strategy, the behaviour of
the forager is only conditional upon having been
successful or unsuccessful at capturing a prey in the
previous site, it is not dependent upon the state in
which the site was searched.

Tracking Errors in Area Concentrated Search

Stephens (1982) has argued that foragers must
balance the costs of sampling too often (sampling
errors) against the opportunity costs of sampling too
seldomly (overrun errors). These errors are collec-
tively referred to as tracking errors. An optimal
forager adopting an ACS strategy commits overrun
errors by searching extensively when the environment
is good, and commits sampling errors when searching
intensively when the environment is bad. In order to
examine these errors we must construct four new
‘‘composite states’’ that represent each searching
speed in a good or bad link. In mathematical terms
we need to find the stationary probabilities associated
with intensive and extensive search when a link is
occupied or vacant (see Appendix B). These new
states are denoted as u+,u−,v+,v− (not to be confused
with u+,u−,v+,v− in Appendix A). Sampling errors
encountered when adopting a strategy p(s1, s2, f1, f2)
are given by the mean of u−, and overrun errors are
given by the mean of v+(1−pv ). Figures 3(a–d) are
plots of sampling and overrun errors over a range of
values of p1 and p2. Increasing p1 when adopting the
strategy p(0,1,1,0) leads to an increase in overrun
errors [Fig. 3(a)], and a slight reduction in sampling
errors [Fig. 3(b)]. Increasing p2, increases the
magnitude of sampling errors at all values of p1 but
does not influence the overrun errors. Increasing p1

F. 3. Tracking errors in area concentrated search with different
values of the resource distribution P. (a) Overrun errors when
adopting the win–fast:fail–slow strategy. (b) Sampling errors
when adopting the win–fast:fail–slow strategy. (c) Overrun errors
when adopting the win–slow:fail–fast strategy. (d) Sampling
errors when adopting the win–slow:fail–fast strategy.

when adopting the strategy p(1,0,0,1) leads to a slight
decrease in overrun errors [Fig. 3(c)], and a large
reduction in sampling errors [Fig. 3(b)]. In the latter
case, increasing p2 decreases the magnitude of errors
at all p1.

Errors are experienced even when the optimal
strategy has been adopted. The win–fast:fail–slow
strategy consistently experiences greater overrun
errors than the win–slow:fail–fast strategy because,
following a failure, win–fast:fail–slow will search
extensively, and is consequently likely to miss an
occupied link, while win–slow:fail–fast is likely to
detect the next link because it searches intensively in
bad areas and is prepared for an encounter.
Win–slow:fail–fast experiences greater sampling er-
rors than win–fast:fail–slow from sampling too often
in bad links. The threshold for switching between
intensive and extensive search when following a
conditional search policy—in which a policy is made
up of both win–slow:fail–fast and win–fast:fail–slow
strategies—can be thought of as a trade-off between
these two types of tracking errors.

Learning During Area Concentrated Search

Thus far it has been assumed that the forager
‘‘knew’’ the parameters that determined the distri-
bution of a resource in its environment. In other
words, we sought to find the optimal switching rule
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for fixed values of the resource process P, assuming
the forager had perfect information about the
environment. In this section we drop the assumption
of perfect information. Foragers are now required to
learn about the environment. We assume that
foragers are not required to learn a strategy during
search, but are required to learn about the prey
distribution, and utilize this information in deciding
which strategy to employ. This is equivalent to
assuming that evolution has established the strategy
set, and learning is required to activate an appropriate
strategy. We explore a learning rule whereby
information is acquired during the process of area
concentrated searching. By adopting a Bayesian
learning rule (McNamara & Houston, 1980) the
forager is able to update incrementally its current
assessment of the environment after each link of the
resource is sampled.

 

The forager’s current estimate of the llikelihood of
some given values for P is summarized by a prior
probability distribution. Following an encounter with
a resource, or a failure to encounter a resource,
Bayes’s theorem provides one way in which a
forager’s prior assessment of the resource distribution
can be updated to form a posterior distribution which
provides a more accurate representation of the state
of the environment (see Appendix C for the rules for
updating this distribution). The fundamental problem
faced by a learning forager lies in choosing between
identification and control. The forager must decide
between sampling the environment in order to
improve its current estimate of the resource
distribution (identification) or adopt a strategy
conforming to its current best estimate of the resource
distribution (control). During ACS, the cost of
identification is related principally to sampling errors
experienced during intensive searching, because
intensive search provides the most reliable infor-
mation about the distribution of resource when
failing. The dilemma is, therefore, whether a forager
should perform a period of intensive search prior to
adopting a full conditional strategy based on its
current estimate of P, or accumulate information
during the course of searching based on its current
estimate of P.

Figure 4 shows the results of a simulation in which
the resource distribution was fixed at a point where
p1+p2Q1, and in which the forager was required to
estimate the value of this sum while exploring the
environment starting with a prior estimate p1+p2=1.
The forager pursues an identification strategy
(unconditional intensive search) for 100 iterations,

F. 4. Bayesian learner’s estimated parameter values of resource
distribution p. Points on the curve are estimates of the parameters
p1 and p2 at time t when following either an identification or control
strategy. The switching threshold between optimal strategies lies at
1. The true value of p1 and p2 is shown with a horizontal line
(=0.76). To the left of the vertical line the forager pursues an
identification (I) policy and to the right a control (C) policy (see
section 5 for full details).

followed by a switch to the control strategy consistent
with its current estimate of P. Figure 4 illustrates how
an early identification phase can allow

F. 5. Identification profiles. Mean, net intake of forager
employing periods of identification varying from 0–350 time steps
(a) Uniform distribution of resource, mean=1, skew=0. (b)
Gaussian distribution of resource, mean=1, skew=0. (c) Gaussian
distribution of resource, mean=1.2, skew=0.4. (d) Gaussian
distribution of resource, mean=1.4, skew=0.8. Total bout length
1000.
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a forager to converge rapidly on the true values of P,
and also shows that a control strategy can cause the
estimate to depart from its true value. By 1000
iterations the forager has converged on the true state
of the environment.

      ?

In order for an identification phase to be adaptive,
the total gain during a foraging bout—starting at time
t=0 and terminating at a final time T (T=1000 in the
simulation)—must be greater when it involves a pure
identification phase followed by a control phase, than
when employing control exclusively. We assume that
a forager enters the environment with a prior estimate
of P that is equal to the mean of the distribution from
which the elements of P are drawn. We then
investigate how the character of this distribution will
influence the choice of identification strategies by
running a number of simulations.

We examine four cases in which p1 and p2 are
sampled from one of four Gaussian type distributions
with different amounts of skew, and from one
uniform distribution. In each case the elements of P

are randomly sampled from a joint density function
W(p1, p2) with mean m and standard deviation s. We
assume that the prior is also given by W(p1, p2). For
each of the five distributions, 50 random samples of
p1 and p2 are taken. The environment is thus made to
fluctuate between searching bouts. For each sample
(one bout) the forager is made to search the
environment employing an unconditional intensive
search (identification) for a fixed duration, followed
by the optimal conditional search strategies (control)
for the remaining time. The conditional search
strategy deployed depends on the foragers current
estimate of p1 and p2 at time t. Setting a total foraging
bout to T (T=1000) iterations, we vary the length of
the identification duration and calculate the net
intake over T. In this way for each distribution, we
obtain 50 different foraging bouts randomly sampled
from the same distribution from which to calculate
the mean intake for different identification times.

Figure 5 illustrates the results of the simulations
with the five different distributions. We shall refer to
these plots as identification profiles. The identification
profiles summarize the net intake of a forager that
allots 0, 100, 250, or 350 time steps to an identification
phase in a bout of 1000 time steps. When the
distribution of resource is uniform [Fig. 5(a)], the
prior estimates of p1 and p2 lie on the switching
threshold. An identification phase that lasts 100
iterations, followed by 900 iterations of control,
produces the maximum net intake over the foraging
bout. The identification profile therefore suggests that

a short period of identification is optimal and that no
period of identification is worst of all. When the
distribution is Gaussian [Fig. 5(b–e)], the optimal
time spent in identification is an increasing function
of the skewedness of the distribution. Hence low
skewedness favours a pure control policy [Fig. 5(b)],
while a high skewedness [Fig. 5(e)] favours an identifi-
cation phase lasting 250 iterations (one quarter of
the total time).

The Value of Information in Area Concentrated

Search

Learning provides foragers with a mechanism for
tracking changes in environmental parameters, but
may involve costs (Williams, 1966) that offset this
advantage. Hence evolution may, in some cases,
favour fixed generalist strategies. In section five we
demonstrated the advantage of a ‘‘learning’’ period
when used in conjunction with a control policy. We
did not however demonstrate the absolute value of
the optimal strategy in comparison with a fixed
generalist strategy. The value of possessing infor-
mation about the true state of the environment, and
hence the value of learning, should be compared with
the value of a fixed behaviour that yields the best
mean intake rate in a number of different environ-
ments (Gould, 1974; Stephens, 1989). This is because
unless information has a high value, the costs of
learning (not treated in this paper) might offset any
advantages. Information leading to the optimal
choice of strategy, may vary in its value according to
the distribution of resource. Gould’s and Stephens’s
approach can be applied to ACS.

The environment can be in one of two states, S1

(corresponding to p1+p2Q1) And S2 (corresponding
to p1+p2q1). The forager’s prior knowledge of the
state of the environment is given by q1 and q2, with
qi=Prob(Si ). The forager forms an estimate of the
environment which is denoted e (note that e is a
discrete estimate, for example S1 or S2), such that the
payoff to the forager in environment Si is given by
G(e =Si ). This latter function is the instantaneous rate
of gain g when adopting a strategy p based on the
current estimate of e. The optimal strategy in
environment Si is given by,

G(e*i =Si )=max
e

G(e =Si ), (6)

and the best strategy ‘‘on average’’ is given by,

s
i=1,2

qiG(e'=Si )=max
e

s
i=1,2

qiG(e =Si ). (7)
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F. 6. The value of information in area concentrated search.
Each curve represents the difference in expected long term intake
rate between a forager adopting the optimal searching policy and
a forager adopting the best fixed generalist strategy. As the resource
distribution becomes more patchy, the value of information about
the true state of the environment increases.

mation is least valuable in cases in which the
environment possesses a low density of resource
(p1, p210), or in cases in which resource is available
continuously (p111; uniform distribution).

The Functional Response in Area Concentrated

Search

The functional response (Holling, 1959) relates the
intake rate of a predator to the density of the
resource/prey. Perhaps the most common functional
response curve is Holling’s type two in which intake
rate increases with prey density, but at a decelerating
rate. This form is commonly accounted for by
assuming that intake rate increases in concert with
prey density, and that the time spent handling prey
becomes increasingly limiting at higher densities. We
can plot a functional response curve for the optimal
area concentrated searcher by calculating the density
of resource for a given P, and calculating the forager’s
intake rate using eqn (5). The functional response
for a searching forager is plotted in Fig. 7. This curve
is a type three (sigmoidal) functional response. This
form is a consequence of an increase in the forager’s
searching success as resource density increases,
followed by an asymptotic phase as handling time
becomes limiting. The accelerating phase is a result of
an apostatic effect (Endler, 1991)—similar to that
found under the optimal search rate hypothesis of
Gendron & Staddon (1983)—in which a predator
chooses to spend more time searching in high density

The formula Gould derived to demonstrate the value
of information can be used to demonstrate the value
of learning for ACS. The value of learning is given
by,

v= s
i=1,2

qiG(e*i =Si )− s
i=1,2

qiG(e'=Si ). (8)

We may interpret this expression as the value of
information about the true state of the environment
for a forager, with prior knowledge e' and searching
in an environment Si , adopting a generalist strategy.
The best generalist strategy may be found using
eqn (7). Here we seek to maximize the sum of eqn (7)
over p1 and p2. Hence we find,

max
s1,s2,f1,f2

s
p1,p2

g(q1, q2, q3, q4, tu , tv ) (9)

in terms of a single strategy p(s1, s2, f1, f2).
This strategy is found by numerically maximizing
eqn (9) at 50 values of p1 and p2. Using this
approximate method the best generalist strategy
is given by p(0,1,1,0). In other words this
strategy is a win–fast:fail–slow strategy, which is
an optimum strategy when p1Q1−p2. The best
generalist strategy is therefore also a conditional
strategy, and one taken from the existing strategy
set.

Figure 6 illustrates a family of curves showing the
value of information about the true state of the
environment at different values of P. There is a
maximum value for information when contiguous
links are likely to have the same state, i.e. as the
resource becomes more patchy (p1, p2�0). Infor-

F. 7. Functional responses of an area concentrated searcher
(type three). Each point on the curve represents the mean long
interkerate for a given density of a resource. The two curves differ
in the values of p2 employed in the simulation. The upper curve was
calculated with p2=0.4 and the lower curve with p2=0.1. The
vertical lines denote switching thresholds for optimal searching
policies in which p2=0.4 (left) and p2=0.1 (right). In this graph, the
value of p1 ranges from 0–1. Density is equal to

1−p2

2−p1−p2
,pu=0.8, pv=0.4, tu=8,tv=4.
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areas than in alternative areas with lower rates of
encounter.

Discussion

ACS strategies provide simple rules of thumb for
exploiting heterogeneous distributions of resource.
Many foragers are likely to adopt ACS strategies
rather than random search or complex patch leaving
strategies (Charnov, 1976; Iwasa et al., 1981), because
a resource may remain distributed in clusters, while
patches per se, will not always exist (Bond, 1980).
When discrete patches do exist, foragers may still be
unable to perceive them (Wiens, 1976). We have
sought to examine searching rules using ACS models.
ACS models apply to cases in which a resource is
randomly distributed but not restricted to discrete
patches. A simple stochastic model with few
parameters allows us to identify a number of
important principles operating in searching be-
haviour, and to analyse the role of learning during
search in fluctuating environments. The results of the
model are summarized below:

(1) A random distribution of resource results in a
simple, deterministic rule of thumb for exploring
the environment. This rule is a conditional one
that responds to the presence or absence of
resource by changing searching speeds.

(2) The optimal searching rule is resource dependent,
a feature which allows a simple representation of
the resource distribution to be formed. ACS is
often thought of as a uniquely win–slow:fail–fast
strategy. Optimal ACS takes account of the
patchiness of resource and consequently can
include a win–fast: fail–slow strategy.

(3) Optimal searchers are not immune from making
errors, and optimal searching strategies can be
viewed as attempts to minimize searching errors.
The type of errors experienced will depend on the
patchiness of the resource.

(4) Foragers are likely to require information about
the distribution of the resource, and hence must
learn during searching. The need to learn will
conflict with a forager’s need to exploit the
resource (identification vs. control), and conse-
quently observed behaviours should reflect this
trade-off, with a period of time dedicated to
searching strategies that enhance learning.

(5) The time spent acquiring information, and
hence foregoing immediate exploitation, reflects
the extent to which the resource distribution
fluctuates between foraging bouts. The greater the
discrepancy between prior expectations, and the

possible states of the environment, the more
valuable information becomes.

(6) The absolute value of information about the
true state of the environment (employing the
optimal strategy), depends on the nature of the
resource distribution. As the resource distri-
bution becomes more patchy, information be-
comes more profitable. Identification is therefore
profitable in patchy environments.

(7) Individual searching strategies will be reflected in
the functional response. A resource dependent
searching strategy is able to produce a type
three (sigmoidal) functional response. Proportion-
ately more time is spent searching in high density
areas than in low density areas (an apostatic
effect), causing an acceleration in intake rate as
resource density increases, followed by a decelera-
tion in intake rate as search time becomes limiting.

Deterministic searching rules provide a parsimo-
nious solution to environmental stochasticity. In
highly irregular environments, from which infor-
mation can not be consistently extracted, simple,
deterministic policies can be as effective as be-
haviourally complex responses requiring memory
coupled with imperfect information. In the economics
literature, Heiner (1988) has argued that stereotyped
behaviour is a natural response of an agent with
limited information:

‘‘agents with bounded rationality . . . must be
limited by processes that systematically restrict
behaviour away from selecting action that
optimising agents would choose. Behaviour re-
stricted in this fashion is said to be . . .
rule-governed behaviour’’.

During ACS, heterogeneities in resource distributions
are exploited by conditionally intensifying search
when occupying good areas of resource. Thus
a simple searching strategy produces adaptive
responses without the need for a memory of
many previous encounters, or for a perception of
patch boundaries. Simple as ACS rules might be,
they are not simply a matter of searching intensively
when encountering a resource, and extensively
when failing to encounter the resource (win–
slow:fail–fast). Searching rules can demonstrate a
simple resource dependence, which in environments
that regularly alternate between good and bad links,
favour a win–fast:fail–slow strategy. ACS only
involves, therefore, a switch to intensive search in
cases where the chance of neighbouring links being
occupied is high.

Searching rules can be assessed in terms of the
tracking errors that are made by sampling too often
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in poor areas (sampling errors) or too seldomly in
good areas (overrun errors) (Stephens, 1982). When
adopting a win–fast:fail–slow strategy, overrun errors
are not influenced by stretches of bad links, but only
by stretches of good links [Fig. 3(a)], while the reverse
is true for sampling errors [Fig. 3(b)]. This is because
as the number of contiguous good links increase, the
probability of missing a good link while searching fast
increases. Sampling errors are unaffected when
searching fast over good links and increase when
searching slowly over bad links. When adopting a
win–slow:fail–fast strategy, stretches of bad links
influence both the overrun errors and sampling errors
[Figs 3(c–d)]: both types of error are reduced as the
resource becomes more patchy (p14 1, p24 1). The
optimal choice of searching strategy reflects the
incidence of errors, and search strategies can be
interpreted as mechanisms which minimize searching
errors. If one restricts the analysis of foraging
exclusively to rates of gain, one may fail to recognize
that the immediate cause of a behaviour is the
avoidance of error.

There are many examples of rule-based concen-
trated searching in the foraging literature. Waterbugs
increase the frequency and duration of active forag-
ing bouts when failing to encounter prey (Cloarec,
1990), thus demonstrating a preference for extensive
search upon failure to encounter resource. The
solitary centipede, Scolopendra polymorpha, employs
active search at low densities of resource, and am-
bush predation at higher densities (Formanowicz &
Bradley, 1987). Coccinelid larvae predate patchy
distributions of aphid populations. Thus, following
an encounter with an aphid, a ladybird larva em-
ploys intensive search, increasing the probability of
future encounters (Ferran & Dixon, 1993). In each of
these cases, the forager adopts the canonical
win–slow:fail–fast strategy. As suggested above,
this strategy constitutes an optimal response in highly
patchy resource distributions, but not in all patchy
distributions. We would encourage experimentalists
to analyse cases in which the alternative strategy,
win–fast:fail–slow is optimal. These are cases in
which the patchy distribution is not sufficient to
overcome the high incidence of errors associated
with a win–slow:fail–fast strategy. This error arises
because when good links have a limited extent,
successful encounters are likely to be followed by
bad links. Hence a consideration of errors allows us
to predict an alternative area concentrated search
rule.

Johnston’s neural economy hypothesis (1982)
contends that the world is too complex for every
behavioural contingency to come pre-programmed as

a reflex response. Learning can provide a means of
enhancing relevant existing responses, for application
to new situations. Foragers must learn about their
environment by expanding prior estimates about the
environment through experience, and applying this
information when making foraging decisions (Oaten,
1977; Ollason, 1980). Ollason (1980) has suggested
that the need to learn about an environment prevents
an animal from foraging optimally. McNamara &
Houston (1985) have argued that this need not be true
when foraging rules take account of learning
components. The analysis of foraging is thus
transformed from one in which the forager performs
the current best behaviour to one in which the forager
‘‘perform(s) as well as possible, given that it starts
without complete knowledge of the environment’’
(our italics, McNamara & Houston, 1985, p. 246).

Area concentrated search, coupled to a Bayesian
learning rule can be viewed as an example of optimal
foraging sensu McNamara & Houston, in which the
need to learn about the environment causes observed
behaviours to differ from behaviours under an
assumption of omniscience. Foragers can either
accumulate information during the course of search-
ing, using current estimates of the resource distri-
bution (control strategy) or employ a dedicated
information acquisition strategy (identification strat-
egy) for a short while, followed by a control phase.
In temporally fluctuating environments the relation-
ship between the median value of a resource
distribution P and its mean determines whether an
identification phase is likely to be favoured. When
each encounter or failure, can occur with a
probability far from the prior estimate of these events,
identification is favoured. When the prior distribution
is uniform [Fig. 5(a)] the mean of the distribution is
not a good predictor of a sample drawn from the
environment. An encounter or failure is therefore
moderately informative. When the resource par-
ameters (p1, p2) are sampled from a Gaussian
[Fig. 5(b)], each successive environment is much
like the last and the resource is always distributed
closely around the mean of the prior. Hence
identification is of limited value because the
informational gains following a period of enforced
intensive search, are of less value than the loss in
encounters. As the Gaussian distribution becomes
more skewed [Fig. 5(c–e)], successive environments
fluctuate, with a resource that is frequently dis-
tributed far from the previous mean, causing
identification to become more profitable. Identifi-
cation is therefore useful in cases in which
the previous mean is least informative about the
permissable states of the environment.
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There is a correspondence between these results
and those of Stephens (1991) who draws a
distinction between ‘‘within-generation predictabil-
ity’’ and ‘‘between-generation predictability’’. Learn-
ing is favoured given some within-generation structure
in the stimulus and a degree of unpredictability either
within- or between-generations. In our searching
model, the resource distribution is specified by two
parameters, fixed in each bout, which specify the
patchiness of the resource. Encounters with resource
vary probabilistically (within-generation predictabil-
ity). Between bout parameters are sampled from a
range of distributions (between-generation pre-
dictability), and it is the structure of these
distributions which controls the extent to which
learning is favoured. Stephens emphasizes the
evolution of learning by employing phylogenetic
nomenclature (generations), our results can be
interpreted as readily as ontological effects, in which
environments fluctuate over a short time scale, and
change significantly only in the longer term.

These results were pre-empted in the experiments
of Shetleworth et al. (1988) who demonstrated that
pigeons will increase their rate of sampling at
fluctuating feeders as resource quality drops. A
perceived change in the environment precipitates
sampling (identification) behaviours. This was also
shown by Kramer & Weary’s observation (1991) that
foraging chipmunks dedicate more time to explo-
ration (identification) when food sources change
unpredictably in time. Similarly, Formanowicz &
Bradley (1987) found that centipedes would engage in
a period of assessment prior to adopting a preferred
search tactic predicated on this assessment.

Environments that fluctuate in time may favour
identification, but the extent to which this is favoured
will also depend on the value of having accurate
information about the resource. In some environ-
ments, pursuing a sub-optimal strategy is less costly
than in others. We have found that the cost of
sub-optimal decisions increases as the resource
becomes more patchy (Fig. 6). A patchy distribution
describes a resource which becomes aggregated in
clumps and is separated by large, resource-free
stretches. The value of information is not equivalent to
the period of time spent in conditional search, and
does not depend on within- or between-generation
variability in the resource. The value of information
only gives us some idea about the likelihood of
learning in a natural environment. In conclusion,
identification is therefore most likely to be seen in
cases in which environments fluctuate, the resource
distribution is skewed, and the environment is patchy
(mean resource parameters p1 and p2 are high).

Several authors have stressed the need to include
behavioural and physiological processes in the
description of predator-prey interactions (Metz &
Diekman, 1986; Casas et al., 1993). The functional
response relates the number of prey attacked per unit
of time to the resource density, and provides a
convenient summary of the predator prey relation-
ship. An ACS model provides explicit treatment of
foraging rules within an optimality framework,
and can serve as an individual based model of
predator–prey interactions. The functional response
of an ACS foraging in a patchy resource distribution
takes the form of a type three functional response
(Holling, 1953). This arises through an apostatic
effect: as the number of contiguous good links
increases, the amount of time searching in high
density areas increases with a switch to intensive
search. At the highest resource densities, resource is
continuously encountered and the minimum search
time limits any further increase in intake rate. Hence
the functional response flattens out. The point of
inflexion in the response curve is given by the
switching threshold between win–slow:fail–fast and
win–fast:fail–slow strategies. Apostatic predation
during ACS is different to the apostatic effect
explained by the optimal search rate hypothesis of
Gendron & Staddon (1983), because in ACS the
forager is not required to learn to spend more time in
high reward rate areas, but does so as a consequence
of a conditional strategy that restricts searching effort
to smaller areas upon encounter with prey.

The sigmoidal functional response (type three) has
been reviewed by Hassell et al. (1977) in invertebrate
predators such as the Hemiptera, Coleoptera and
Hymenoptera. Hassell et al. maintain that this
functional form is likely to be found in all cases in
which there is a threshold prey density below which
the efficiency of searching by a predator drops,
leading to prey switching. The ACS model demon-
strates that a switching threshold can produce the
sigmoidal functional response, but that this threshold
need not imply reduced efficiency. The threshold
represents a shift in emphasis, from predominantly
extensive searching when encountering resource, to
predominantly intensive searching as the prey density
increases.

Ecologists are familiar with the concept that an
accelerating functional response curve can lead to
stability in populations through positive density
dependence. It is also true that a decelerating curve
can lead to instability through negative density
dependence (Murdoch & Oaten, 1975). Perhaps less
familiar to ecologists are the behavioural mechanisms
giving rise to these functional forms. It is well known
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that the degree of aggregation or patchiness of a
resource has consequences on the searching strategies
of a predator (Hassell, 1978). Less familiar again is
how individual responses to resource heterogeneity, in
particular apostatic predation and a resource
dependent switch between searching rules, could
cause the functional response to become a type three:
a stability promoting form. Aggregation may
promote population stability through a partial refuge
effect (Hassell & May, 1974), through tardy learning
of individual prey properties at low densities (Holling,
1965) or, as suggested by our results, by promoting an
identification strategy that reduces the pressure on the
resource population thereby mitigating exploitation.
Models of area concentrated search, coupled with
information acquisition strategies, may therefore
provide a means of explaining population phenomena
in terms of individual foraging mechanisms.

Thanks to Alasdair Houston, Mark Pagel, John Krebs,
Alan Grafen and an anonymous referee for comments and
discussion at various stages in the preparation of this
manuscript.
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APPENDIX A

To find the values of the elements of the S and F

matrices that maximize g, we construct four
composite states that combine search speed with
foraging success. The states are as follows:

u+: intensive search with reward (A.1)

u−: intensive search with no reward (A.2)

v+: extensive search with reward (A.3)

v−: extensive search with no reward (A.4)

We develop terms for the transition probabilities
between these four states.
The probability of switching from u+ to any other
state:

u+4 u+=s1p1pu

u+4 u−=s1(1−p1pu )

u+4 v+=(1−s1)p1pv

u+4 v−=(1−s1)(1−p1pv )

The probability of switching from v+ to any other
state:

v+4 u+=(1−s2)p1pu

v+4 u−=(1−s2)(1−p1pu )

v+4 v+=s2p1pv

v+4 v−=s2(1−p1pv )

The probability of switching from u− to any other
state:
Switching from a negative state represents a more
complex problem for a forager than switching from a
positive state. A positive state implies that food was
present, while a negative state could result either from
an absence of the resource or from failure to acquire
the resource present. Because in our model the forager
has no memory for anything previous to the last
result, we must calculate the probability of the
environment being in state en+1=1 given that the
forager did not encounter a prey in the nth link
searching at speed u. We denote this probability mu .
From P we can calculate the stationary distribution
of the resource. We know that a randomly chosen site
contains food with probability

1−p2

2−p1−p2
, (A.5)

and thus from Bayes’s theorem of conditional
probability,

mu=
(1−p2)(1−pu )

(1−p2)(1−pu )+(1−p1)
. (A.6)

The probability that the forager does not find
resource in state u because there was no food is
given by 1−mu , and hence the full state transitions
are,

u−4 u+=f1{mup1+(1−mu )(1−p2)}pu

u−4 u−=f1{1−pu [mup1+(1−mu )(1−p2)]}

u−4 v+=(1−f1){mup1+(1−mu )(1−p2)}pv

u−4 v−=(1−f1){1−pv [mup1+(1−mu )(1−p2)]})

The probability of switching from v− to any other
state:
Similarly, the probability that the forager does not
find resource in state v because there was no food is
given by 1−mv , where

mv=
(1−p2)(1−pv )

(1−p2)(1−pv )+(1−p1)
, (A.7)

and hence the full state transitions are,

v−4 u+=(1−f2){mvp1+(1−mv )(1−p2)}pu

v−4 u−=(1−f2){1−pu [mvp1+(1−mv )(1−p2)]}

v−4 v+=f2{mvp1+(1−mv )(1−p2)}pv

v−4 v−=f2{1−pv [mvp1+(1−mv )(1−p2)]}

These composite states form the stochastic four by
four matrix M. We then solve the equation

q� (t+1)=Mq� (t), (A.8)

where q� (t) is the probability distribution of composite
states at time t. Hence we have,

q1=prob(forager is in state u+), (A.10)

q2=prob(Forager is in state u−), (A.11)

q3=prob(forager is in state v+), (A.12)

q4=prob(forager is in state v−). (A.13)

The expected intake rate is then simply given by,

g=
q1+q3

(q1+q2)tu+(q3+q4)tv
. (A.14)

The optimal foraging strategy, which we denote by
p(s1, s2, f1, f2), is obtained by numerically maximizing
A.14.
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APPENDIX B

We seek to find the errors associated with searching
intensively when resource is present or absent in a link
of the Markov chain. We construct four composite
states that combine search speed with environmental
state (good/bad). These states are written as,

u+: intensive search when link occupied, (B.1)

u−: intensive search when link vacant, (B.2)

v+: extensive search when link occupied, (B.3)

v−: extensive search when link vacant. (B.3)

We can write down the expressions for transitions
between these states:

u+4 u+=(pus1+(1−pu )f1)p1

u+4 u−=(pus1+(1−pu )f1)(1−p1)

u+4 v+=(pu (1−s1)+(1−pu )(1−f1))p1

u+4 v+=(pu (1−s1)+(1−pu )(1−f1))(1−p1)

u−4 u+=f1(1−p2)

u−4 u−=f1p2

u−4 v+=(1−f1)(1−p2)

u−4 v−=(1−f1)p2

v+4 u+=(pv (1−s2)+(1−pv )(1−f2))p1

v+4 u−=(pv (1−s2)+(1−pv )(1−f2))(1−p1)

v+4 v+=(pvs2+(1−pv )f2)(1−p1)

v+4 v+=(pvs2+(1−pv )f2)p1

v−4 u+=(1−f2)(1−p2)

v−4 u−=(1−f2)p2

v−4 v+=f2(1−p2)

v−4 v−=f2p2

These composite states form the stochastic square
matrix N, we then solve the equation

r� (t+1)=Nr� (t) (B.4)

and the stationary distribution of errors is given by
the eigenvector r for the unit eigenvalue. Hence the
probabilities ri (i=1, 4) correspond to the probabili-
ties of searching intensively in an occupied link,
searching intensively in a vacant link (sampling error),
searching extensively in an occupied link (overrun
error), and searching extensively in a vacant link.

APPENDIX C

We consider four cases corresponding in turn to the
four possible outcomes of two consecutive searches.
We will denote by *(n)4 *(n+1) the transition between
sites n and n+1. In this notation, *(m)=‘‘+’’ if a
prey was encountered in the mth site and *(m)=‘‘−’’ if
the forager failed to encounter food in the mth site.
Let z(p1, p2)dp1dp2 be the prior probabilities that
P $ [pi , pi+dpi ], i=1, 2. For short, we will write
p1,p2 instead of P $ [pi , pi+dpi ]. Bayes’s rule then
gives us,

prob(p1, p2=+4+)=
prob(+4+=p)prob(p)

prob(+4+)
=

pfp1pupvz(p1, p2)
��qfq1quqvz(q1,q2)dq1dq2

dp1dp2 (C.1)

prob(p1, p2=+4−)=
prob(+4−=p)prob(p)

prob(+4−)
=

pfpu (1−p1pv )z(p1, p2)
��qfqu (1−q1qv )z(q1, q2)dq1dq2

dp1dp2 (C.2)

prob(p1, p2=−4+)=
prob(−4+=p)prob(p)

prob(−4+)
=

[(1−pf )(1−p2)+pfp1(1−pu )]pvz(p1, p2)
��[(1−qf )(1−q2)+qfq1(1−qu )]qvz(q1, q2)dq1dq2

×dp1dp2

(C.3)

prob(p1, p2=−4−)=
prob(−4−=p1, p2)prob(p1, p2)

prob(−4−)

=
pf (1−pu )(1−p1pv )+(1−pf )(1−pv+p2pv )z(p1, p2)

��qf (1−qu )(1−q1qv )+(1−qf )(1−qv+q2qv )z(q1, q2)dq1dq2
dp1dp2 (C.4)

where u and v represents the search speeds during the nth and (n+1)th steps respectively and

pf=
1−p2

2−p1−p2
.


